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Operation Complexity for Integer or RNS Gaussian Elimination 

PETER R TURNER AND BARRY J KIRSCH 

Mathematics Department, US Naval Academy, Annapolis, MD 21402 and 
Naval Air Warfare Center, Code 5051, Warminster, PA 18974 

ABSTRACT. This note addresses the question raised by Turner & Kirsch 
(1994) of the operation counts for the Gauss elimination solution of adaptive 
beamforming problems using integer arithmetic. Because the covariance matrix 
is positive definite hermitian, it follows that the multipliers cannot be precom- 
puted and stored for each pair of rows. This has the effect of increasing the 
number of divisions from 0(7V2) to 0(N3) which for any integer arithmetic 
(and, especially, RNS arithmetic) may prove to be an unacceptable cost. These 
results are extended to various degrees of parallelism in the integer or RNS 
processors and to the use of the L-CRT for scaling in a divisionless algorithm. 
Scaling using a fractional divider is also considered. The cost of RNS divisions 
is revisited in the light of newer division algorithms based on the work of Hitz 
and Kaltofen (1994). The relative cost of the divisions is substantially reduced 
rendering the RNS approach potentially practical for moderate-size problems. 

1.    INTRODUCTION 

This paper follows up on the observation made in [10] that the Gaussian elimination 
solution of the covariance matrix form of the adaptive beamforming problem using 
integer arithmetic requires a modification to the basic elimination algorithm so that 
the divisions are performed after double-length multiplications. The choice of Gaus- 
sian elimination for adaptive beamforming was discussed in [6] and [7]. The essential 
fact is simply that the covariance matrix is positive definite so that simple Gauss 
elimination is stable. For adaptive processing the covariance matrix is changing each 
time the system must be solved and so there is no advantage in storing the factors 
of the LU decomposition of the matrix.  Gauss elimination is also more economical 
in terms of arithmetic operation counts than alternatives.   In section 3 of [10] the 
conventional ijMorm of the forward elimination algorithm is described as: 

for i = 1 to N - 1 
for j = i + 1 to N 

'.— Qji/Q-ii m 
aji := 0 
bj := bj — mbi 

for k = i + 1 to N 
a,jk := djk — maik 
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The problem here is that for the adaptive beamforming problem the covariance 
matrix is positive definite Hermitian and so has its largest element on the diagonal. 
On at least one occasion (using integer arithmetic) the multiplier m will therefore 
round to 0 leading to erroneous solutions. The simple way to avoid this is to perform 
the multiplications using a double-length accumulator first and then to divide these 
long products by the appropriate diagonal element. The dynamic range and precision 
analysis of [10] was based on the use of this strategy. 

In this paper we address the questions raised by this in terms of arithmetic oper- 
ation counts and therefore timing for both conventional (binary) integer arithmetic 
and for residue number system, RNS, arithmetic. In Section 2 we look at the division 
operations for forward elimination and estimate their cost in RNS arithmetic in terms 
of a base unit of an 8-bit arithmetic operation such as would be performed for each 
modulus in RNS. The primary conclusion from this section is that these divisions 
achieved by using the Chinese Remainder Theorem, CRT, would make the process 
too expensive. 

Section 3 deals with what may be regarded as the opposite extreme approach for 
integer Gaussian elimination - the divisionless algorithm in which all the elimination 
steps are based on "cross-multiplication" between the rows. We see that only the 
very smallest and simplest of adaptive beamforming problems are amenable to this 
approach due to the rapid growth of the required dynamic range. 

Clearly, some compromise between these extremes is necessary if integer, and 
especially RNS, Gauss elimination is to be a practical tool for these problems. In 
Section 4 we study the possibility of computing and storing the multipliers as fractions 
and then scaling the "elimination row" appropriately. The idea being to reduce the 
number of divisions that are to be performed back to 0(iV2). Unfortunately the cost 
in terms of dynamic range growth remains too great for problems with N > 4. 

In [6] and [7] we considered the use of a modified divisionless algorithm incorpo- 
rating some scaling which could be performed in RNS using the L-CRT which is a 
modification of the CRT with a built-in scale factor and a consequently shorter binary 
accumulator. This approach is analysed in Section 5. The principal conclusion there 
is that some 70% of the cost of the divisions can be saved making the RNS solution 
feasible for small beamforming problems. The proportional saving decreases to about 
35% for larger dimensional problems showing that this approach is clearly superior to 
using the CRT to perform the divisions. It still appears that the overall cost would 
become excessive as the dimension increases. 

An alternative to scaling would be to use one of the more recent RNS division 
algorithms such as that of Hitz and Kaltofen [5]. This algorithm makes use of the 
RNS equivalent of a double length accumulator to perform the divisions by using an 
extended RNS basis. Its efficiency relies heavily on having sufficient parallelism in and 
among the RNS processors. The use of, and improvements to, this algorithm within 
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our Gauss elimination scheme are the subject of Section 6. The improvements which 
are likely to be obtained using this division algorithm suggests that beamforming 
problems of considerably greater dimension may be amenable to solution using RNS 
arithmetic. 

2.    DIVISION COUNT FOR FORWARD ELIMINATION 

The modified form of the algorithm, still written in the ijk—form would be 
for i = 1 to N - 1 

for j = i + 1 to N 
bj := bj - (biaji)/au 
for k = i + 1 to JV 

Üjk ■= djk — {o-ikdjij/^ii 
dji := 0 

We see that the number of divisions is now exactly the same as the number of 
multiplications, namely N(N2 -1)/3 rather than the N (N - 1) /2 which are required 
for the original form. (See [1], Chapter 6, for example.) Fast VSLI designs for 
hardware integer division using a "double-length" accumulator use essentially the 
same architectural components as double-length multipliers and so we anticipate a 
significant time-penalty for conventional binary integer arithmetic. 

Note that the back substitution phase of the solution is unaffected by the need 
to perform the divisions last as this is the natural arrangement for that stage of the 
Gauss elimination process. 

For problems of the same dimensions as those considered in [10] where the number, 
of antenna elements (and therefore the dimension of the linear system) N varied from 
4 to 8 to 16 the number of divisions needed in the forward elimination phase are given 
in Table 2.1 below. 

TABLE 2.1 
Numbers of divisions required by original algorithm 
and using "long-accumulator" version 
# antennas N 
4 
8 
16 

N(N-l)/2 
6 
28 
120 

iV(iV2-l)/3 
20 
168 
1360 

For ordinary binary integer arithmetic the time-penalty associated with this in- 
creased number of divisions is likely to be significant. For a special arithmetic such 
as RNS in which division is not easily achieved it is much more troublesome. 

Division cannot be performed entirely within the RNS system but requires a con- 
version to standard binary form via the Chinese Remainder Theorem. Multiplication 
(even complex multiplication) is readily achieved in RNS and benefits from the nat- 
ural parallelism inherent in the system which permits all RNS arithmetic to be per- 
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formed using short wordlengths. Indeed complex multiplication can be performed in 
the Galois-enhanced quadratic RNS (GEQRNS) system in a time comparable to two 
RNS real additions. This is achieved by using representations of both the complex 
integers z and ~z relative to Gaussian prime base moduli and then using number- 
theoretic logarithms of these quantities to perform the multiplication. For a system 
using an effective binary wordlength of say 128 bits but with individual moduli of say 
8 bits, it follows that such a complex multiplication is equivalent to just two 8-bit 
additions if the processors for all the different moduli can be operated simultaneously. 

Alternatively, multiplications for both the complex factors and their conjugates 
could be performed using two modular multiplication operations. Even in the simple 
implementation of the RNS system for complex arithmetic, CRNS, using RNS repre- 
sentations of both the real and imaginary parts, complex multiplication is performed 
using four real multiply-accumulate operations. This complex multiplication will only 
take a time comparable with four real 8-bit multiplications again assuming that the 
different moduli are processed in parallel. 

A corresponding division however first requires conversion to a 128-bit binary in- 
teger format and then two 128-bit integer divisions - one for each component of the 
complex numerator. (The divisor is always real in the case of a positive definite Her- 
mitian matrix.) The time-penalty for these divisions in RNS arithmetic is therefore 
quite severe. 

First consider the CRT conversion from sixteen 8-bit moduli to a single 128-bit 
binary integer. Denote the moduli by ml5 m2,..., m\e and their product by M. Further 
we write m; = M/rrii. Here we assume that mi,m2,...,m16 < 256 so that each is 
representable in 8 bits and the product M < (28) = 2128. Then any nonnegative 

■integer a < M is uniquely represented by its residues 01,02, ...,öi6 relative to the 
various moduli. That is 

a,- = omodra; =: (a)m. 

Then a is given by the CRT by 

.    a = (^fni^aifn'1}     \ 

Assuming that the quantities (fnf )     are available as stored constants, the in- 

ner multiplication is just an 8-bit modular multiplication and each of these can be 
performed simultaneously. These are followed by multiplications of factors with 120- 
bit and 8-bit wordlengths and accumulation of the products. This multiplication 
could be achieved using 8 steps of a double-length multiplier for 64-bit words. (A 
full double-length 64-bit multiplier would need 64 such steps.) The modular part of 
this operation is insignificant, the principal cost is equivalent to 16 x 8 + 15 = 143 
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128-bit accumulations. This must be performed for both real and imaginary parts of 
the numerator and the real denominator. 

.The division can then be performed using this same accumulator using a further 
64 steps. (Here we have taken account of the fact that if all products are to be 
accommodated in the 128-bit equivalent binary system then the individual elements 
of the matrix must have real and imaginary components representable in 64 bits.) 
Finally there is the conversion back to RNS of the quotient which again will be 
negligible compared to the costs already accounted for. The division operation in 
this case is therefore equivalent to some 3(143)+64 = 493 accumulations in a 128-bit 
accumulator. This estimated cost has completely ignored any overhead. 

Even if we assume the practicality of a 128-bit Carry Look-Ahead adder (which 
is certainly still in the future) so that we may take accumulator times to be approx- 
imately proportional to the log2 (wordlength) then these 128-bit accumulations will 
take about 3 times as long as the modular 8-bit operations. That is each division 
will take something around 1500 8-bit modular operation times. Depending on the 
details of the complex RNS arithmetic implementation this is equivalent to saying 
that a division is equivalent to somewhere between 400 and 800 multiplications. 

3.    PROBLEM SIZE AND THE DIVISIONLESS ALGORITHM 

The cost of divisions whether in conventional integer arithmetic or using RNS indi- 
cated by the analysis of the previous section behooves us to consider the divisionless 
form of the Gauss elimination algorithm which was discussed in [6] and [7].   The 
corresponding ijk-iorm of this algorithm is 

for i = 1 to N - 1 
for j = i + 1 to N 

bj :— aubj — a^bi 
for k = i + 1 to N 

ciji := 0 
The major difficulty with this form of the algorithm is of course that the dynamic 

range (or, equivalently, wordlength) required grows rapidly as the elimination pro- 
ceeds. The rate of this growth and possible schemes for dealing with it are discussed 
in [6] and [7] and the additional requirements consequent on the precision demanded 
in the final weights are discussed in [10]. Our primary purpose in this section is to 
consider the size of problem and the input data precision which can be accommodated 
using the divisionless algorithm without any scaling and assuming some limit on the 
largest wordlength available. 

Denote by W + 1 the maximum integer wordlength. For simplicity and for consis- 
tency with the RNS system, we shall assume a sign-magnitude representation so that 
the corresponding dynamic range consists of integers in the interval [-2W,2WJ . We 
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shall denote the dimension of the system by JV and the initial dynamic range of the 
real and imaginary parts of the matrix and right-hand side by (—2™, 2*") correspond- 
ing to an initial wordlength of 1+w bits. At each stage of the elimination, the complex 
cross-multiplication and subtraction has the effect of approximately doubling the re- 
quired wordlength. Specifically in the first stage of the elimination the symmetric 
wordlength w increases to 2w + 2. By the time the k-ih stage has been completed the 
remaining elements of row k +1 and subsequent rows require a symmetric wordlength 
of 2kw + 2(2fc - 1). 

For example, at the end of the forward elimination for a 4 x 4 matrix the symmetric 
wordlengths of the four rows would be w, 2w + 2, 4w + 6, and 8tu + 14. 

Next consider the back substitution phase of the solution which is again to be 
performed in divisionless form. Again the basic algorithm is described in [6] using 
cross-multiplication in place of division. Also the final division is avoided by forcing 
the resulting diagonal elements to be identical and simply scaling (or reading off the 
appropriate number of initial bits from) the final right-hand side. (Note that this 
is permissible since any constant multiple of the true weights is acceptable for our 
beamforming problem.) This phase of the algorithm is described as follows: 

for i = N to 1 
for j = 1 to i — 1 

Oj  .— (*>{{"j       djiOi 

for j = i + lto N 
I/o    *    tXj2«-'7 

The final solution is then just the appropriately scaled final right-hand side vec- 
tor. The corresponding cross-multiplications for the left-hand side are not needed 
explicitly. The main advantage of this is that the dynamic range growth occurs on 
the right-hand side only. This in turn reduces that growth since the matrix elements 
used remain in their initial range of this phase. 

Consider, now, the dynamic range growth resulting from this phase of the solution 
process. It will be convenient to denote the symmetric wordlengths of the various rows 
at the beginning of the back substitution by Wi. From the earlier analysis, we have 
the initial values 

lüi+i = 2{w + 2(2' - 1) 

for each i = 0,1, ...,N — 1. On the first step, every element on the right-hand side, 
except for the final one, undergoes a cross-multiplication with elements of the final 
row. The resulting dynamic range for these modified elements of the right-hand side 
thus become: 

Wi + wN + 2 (i = 1,2, ...,N - 1) 

while the final row remains unchanged. 
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At the next step, the first TV - 2 rows are similarly modified by cross-multiplying 
with elements of the (TV - l)-th row of the matrix while the final component of the 
right-hand side vector is simply multiplied by ajv_i,jv-i which, since this multiplier is 
real, simply increases the required wordlength by tojv-i- The symmetric wordlengths 

are now 

Wi + tujv-i + WN + 4 (i = 1,2, ...,N-2) 
WN-i + WN + 2 

WN-I + U>N 

Continuing in this way, we obtain symmetric wordlengths at the end of the back 

substitution given by 

N 

2(w-i) + 5>; (» = I,2,...,JV) 

However, since these are all similarly scaled multiples of the true solution, it follows by 
symmetry that each of these is representable in the same wordlength. It follows that 
the symmetric wordlength needed for this right-hand side vector at the conclusion of 

the back substitution is 

W = J2w3 = (2N-l)w + 2(2N-N-l) 

In essence, we see that the back substitution can result in (almost) doubling the 
largest wordlength required in the forward elimination. ^ 

The first and most striking conclusion to be drawn is that for any TV > 7, W > 255 
and so such problems cannot be solved using an entirely divisionless algorithm with 
accumulators of 256 or fewer bits. In fact for the adaptive beamforming problem, if 
the data "snapshots" are quantized to qx bits as in [10] then w > 2qx + l so that even 
with the minimal requirement <?* = 1 (which is sufficient only to distinguish between 
"positive", "zero" and "negative") then w > 3 and so problems with TV > 6 are not 
solvable in this wordlength. Of the problem sizes considered in [10] we can therefore 
only hope to solve problems of dimension TV = 4 using this divisionless algorithm 

without any scaling.   
For TV = 4, the above equation becomes W = 15tü+22. For maximal accumulators 

of 128 and 256 bits, that is W = 127 and W = 255, we therefore require I5w < 105 
or 15u; < 233 respectively. These correspond to maximal values w — 1 and w = 15 or 
qx = 3 and qx — 7 respectively. According to the conclusions of [10] using the weight 
quantization requirements obtained by Nitzberg [9] this is probably just sufficient for 
a maximum jammer SNR of 20dB. 
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There is of course the possibility that the initial computation of the covariance 
matrix and cross-correlation vector is performed separately and then rounded to the 
7 or 15-bit wordlengths. Even this would only allow the most significant part of each 
component of the scalar products to be retained for data quantization of these same 
7 or 15 bit precisions. This does not affect the scale of problem solvable in 128 bits. 
With W = 255, and still with N = 4 this scaling of the initial matrix and right-hand 
side does permit solution of problems with jammer SNR's up to about 40dB though 
there is some inevitable loss of precision in the final weights. 

The obvious conclusion from this section is that some scaling or some divisions 
are necessary if adaptive beamforming problems are to be solved by Gauss elimina- 
tion using integer arithmetic. We address these questions further in the subsequent 
sections. 

4. SCALING BY USE OF A FRACTIONAL DIVIDER 

In this short section we investigate the possibility of using the standard Gauss elimina- 
tion algorithm with integer arithmetic by computing the multipliers using a fractional 
divider and then scaling the elimination row and the multiplier to account for (at least 
some of) the fraction bits. More specifically, the original form of the algorithm given 
in Section 1 is used except that the multipliers m are computed as fractions to the 
full precision of the current wordlengths. This fraction is then scaled to an integer by 
multiplication by the appropriate power of 2 and each element of row j is similarly 
scaled before the elimination proceeds. 

There are two principal effects of this. First the number of divisions is reduced back 
to the level of the standard floating-point algorithm - that is N (N — 1) /2 divisions 
are now required in the forward elimination phase. There is some additional overhead. 
Counting the number of fractional bits is essentially automatic as part of the division 
algorithm since the numerator and denominator must be appropriately aligned at 
the outset.   However this scale factor, s, and the "integerized" multiplier must be 
converted back to RNS and then the elimination arithmetic performed as 

bj :— sbj — mbi 
- for k = i + ltoN 

ajk := sdjk — maik 
These additional operations are entirely within RNS however and so their cost 

relative to even the single division is almost negligible. 
The second important aspect to consider is the effect of this scaling on the dynamic 

range requirements of the algorithm. Clearly at any stage there is the possibility 
that the true multiplier can be very small and so the scale factor can potentially be 
equivalent to multiplying the rows by the largest quantity currently representable. 
This means we have to permit the dynamic range to grow at the same rate as for the 
divisionless algorithm. In which case, of course, we may as well use the divisionless 
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algorithm and avoid the divisions altogether. 
There is some potential for a compromise. If the fractional multipliers are com- 

puted to somewhat reduced accuracy, then the advantage of reducing the number of 
divisions is retained but the scale factors will be correspondingly smaller - and there- 
fore, so will the dynamic range growth. This of course introduces rounding errors 
and therefore errors in the weights obtained. The effect of these rounding errors on 
the weights is expected to be bounded by multiplication by the condition number of 
the matrix which can be very large. For example, using the analysis of Compton [2], 
the condition number of the covariance matrix is equal to the jammer SNR so that 
for the cases considered in [10] the condition number varies between 100, 1000, 10000 
and 100000 or approximately 27, 210, 213, and 216. 

This implies that the effect of the roundoff errors introduced by using a truncated 
fraction may be expected to be magnified by the loss of a further 7, 10, 13 or 16 
bits respectively. In practical experimentation, Monzingo and Miller [8] found a 
much more optimistic trend. With an eigenvalue spread of 40dB, or a condition 
number of around 213, and using only a short computational wordlength they found 
a degradation of only 2dB in the weights, or a loss of only about 1 bit of precision. 
However we should observe that this is an average and details of the algorithm used 
or the test methodology are not provided. Also if we are to compare those findings 
with the eigenvalue analysis, it would be necessary to have statistics relating to the 
worst-case loss of precision. If reliable bounds are to be used we are therefore obliged 
to use the more pessimistic eigenvalue results. 

Now the weight quantizations required for the various problem sizes considered in 
[10] were tabulated from Nitzberg's results. They are reproduced as Table 4.1 below. 

TABLE 4.1 

Weight quantization for a 3dB degradation as a function of N 
and the jammer SNR from [9] 

N 20 dB 30 dB 40 dB 50 dB 
4 6 9 13 16 
8 7 10 14 17 
16 8 11 15 18 

For each of these columns, using the eigenvalue analysis there is a potential 
loss of precision which needs to be added to the computational weight quantization 
wordlength. These effective wordlengths are summarized in Table 4.2. 

These wordlengths represent the minimum fraction precision which could be used 
in this approach of reducing the division count by computing fractional multipliers 
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and then scaling. They also therefore represent the range of potential scale factors - or 
equivalently, the potential dynamic range growth at each stage of the elimination. In 
all cases these wordlengths are smaller than the initial wordlengths required for stor- 
age of the covariance matrix and cross-correlation vector for the data quantizations 
obtained in [10]. 

TABLE 4.2 

Weight quantization wordlengths for a 3dB degradation as a function of TV 
and the jammer SNR from [9] allowing for loss of precision due to 
roundoff errors using the condition numbers of [2] 

TV 20 dB 30 dB 40 dB 50 dB 
4 13 19 26 32 
8 14 20 27 33 
16 15 21 28 34 

Using the same notation W{ as in the previous section for the symmetric wordlengths 
at the end of the elimination phase, we now have 

Wi = w + (i - \)Q 

where, as before, w represents the symmetric wordlength for the initial matrix and Q 
the weight quantization wordlength from Table 4.2. 

If the divisionless back substitution is to be used to complete the solution, we find 
that 

i)Q —       Ar N (N 

i=i ^ 

It is clear that for TV > 8 we have W > 255 which was the larger of the two values 
of W we considered in Section 3. For TV = 4, the values of w, Q from [10] and Table 
4.2 above are 17, 13 for 20dB; 23, 19 for 30dB; 31, 26 for 40dB. (The values for w are 
obtained from the values of 2qx -f 1 in Table 5 of [10].) The corresponding values of 
W are 146, 206 and 280 so that we can expect to obtain solutions for four antenna 
problems with a jammer SNR no greater than about 35dB. 

We should note here that if the loss of precision observed by Monzingo and Miller 
[8] is to be trusted in practice then the growth factors are much reduced. Specifically 
the wordlengths in Table 4.2 would be replaced by entries which are just one or two 
greater than those of Table 4.1. The observation that W > 255 for TV > 8 remains 
valid.   For TV = 4, the values of w,  Q for a 50dB jammer are 37 and 18 so that 
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W = 256 and given that maximal growth will not happen at every single stage we 
can be confident of solving such a problem with a 256-bit accumulator limit. It is 
reasonable to expect therefore that a four antenna adaptive problem can be solved 
using a fractional divider in the manner described but that that is the limit of the 

usefulness of this approach. 
Thus scaling using fractional division helps - but not enough. 

5. USING THE L-CRT FOR SCALING IN THE DIVISIONLESS ALGORITHM 

In this section we consider the special form of the divisionless algorithm discussed 
in [6] and [7] in which the range growth was controlled by various scaling operations 
which could be performed using the L-CRT [4] which is a modification of the regular 
CRT in which a full-length accumulator is unnecessary. The basic idea is that each 
element is scaled by a real number V into a range M' which is a power of 2. Thus 

M = VM' 

and the L-CRT calculation is superficially similar to the regular CRT: 

a -TF\mi    Qi) y \ / T 
M> 

where L is the dimension of the RNS basis. This scaling process does, of course, 
introduce errors into the process but these are generally small since the error in |_\| 
is bounded by 1 so that 

a 

V 
<L<.M 

The multipliers fni/V could be stored to sufficient accuracy to reduce this error to 
within any desired bound if some fractional bits are permitted in the log M'-bit accu- 
mulator. The big difference between this and the standard CRT lies in the fact that 
a shorter binary accumulator is used and the mod M' operation is automatic in such 

an accumulator. 
The potential advantages offered by this for our divisionless algorithm are that 

these scaling operations are cheaper than full divisions and fewer of them are needed 
anyway. We should observe however that the detailed algorithm of [7] was only con- 
structed for the N = 4 case. Because of the range growth that is allowed there, for a 
larger system it would be necessary to scale all subsequent stages of the elimination to 
the same range and to modify the back substitution to take account of the additional 
steps too. The alternative would be to add yet more moduli to the RNS basis but 
this would eventually necessitate a very large binary accumulator for the final CRT 
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conversions as well as a final mod operation relative to the resulting very large M 
value. 

In the remainder of this section we consider the savings that can be obtained using 
this scaling. First we summarize the scaling operations that are needed during the 
process described in [7]. All elements of the initial matrix are scaled to a precision 
of ±15 bits. (By this we mean a symmetric wordlength of 15 bits, or 15 bits plus a 
sign.) We may assume this initial scaling is done in the data channels before we begin 
RNS operations. This is adequate for the first stage of the elimination phase. The 
resulting 3x3 matrix and right-hand side must then be scaled to ±27 bits so that a 
total of 12 L-CRT's using a 28-bit accumulator are needed. (The details of the scale 
factors are included in [6] and [7].) 

Further scaling is needed for the back substitution phase: 2 elements are scaled 
using a 56-bit accumulator and then 4 using a maximal length of 80 bits and 4 more 
with a 96-bit accumulator. There are therefore a total of 22 quantities which must 
be scaled using L-CRT operations of varying sizes and using RNS bases of different 
dimensions. In estimating the timing of such operations we shall again ignore the 
modular multiplications at the innermost level of the L-CRT. Also we shall assume 
that accumulator lengths are in fact eight (or more) bits longer than those indicated 
above to allow for fractional bits in the accumulation of the sum. Since we assume 
all moduli are representable in eight bits this is sufficient to obtain the accuracy 
cited above. We shall also make the comparison with performing the divisions fair by 
assuming the availability of carry look-ahead adders of whatever lengths are needed. 
Again, we note that this is not a realistic assumption but was the basis, for the 
pessimistic figures obtained in Section 2 for performing the divisions using the CRT 
and our comparison here is with those figures. 

The scaling outlined above for the forward elimination involves 12 elements each 
represented using five moduli and an accumulator length of at least 36 bits. The terms 
being accumulated are therefore products of 8-bit and, say, 40-bit quantities with the 
final result being chopped to 28 bits. The multiplications require 8 steps of a 24-bit 
double-length accumulator for each modulus and with the final accumulation of the 
sum this yields a total of some 44 (that is, 5x8+4) cycles of a 48-bit accumulator. 
Such an accumulator, according to our assumptions, will be a factor of 2 slower than 
an 8-bit unit. There are 12 elements, nine of which are complex, to be scaled in this 
way so that this scaling is in total equivalent to approximately 1850 8-bit accumulator 
operations. Observe that this is in the range of a single CRT-based division. 

The various scaling operations for the back substitution phase can be similarly 
analysed. In all cases there are 16 moduli, and a 128-bit accumulator is sufficient for 
all the operations. As with the divisions then 143 such accumulations are needed for 
each real or imaginary part to be scaled. There are 10 such quantities in all, and 
only one is real.  This yields a total equivalent to 143 x 3 X 19 or about 8150 8-bit 
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accumulations. 
This in turn makes the total cost of the scaling operations for the complete solution 

process close to 10000 such 8-bit operations. For this same 4x4 system using CRT- 
based divisions as in Section 2, 24 such divisions are needed. The total cost of the 
scaling operations is very close to that of seven divisions and so the saving due to 
scaling by the L-CRT and the "divisionless" algorithm is approximately 70% of the 

cost of the divisions. 
Using the same RNS bases as for the above analysis but extending to larger 

dimensional problems, we see that the forward elimination phase will use N (N - 1) 
scaling operations for the 5-dimensional basis and will then also need a further 

(iV - 1) (iV - 2) (TV - 3)     0 
(N - 2) (TV - 3) + (N - 3) (TV - 4) + • • • + 6 = *        3  - 2 

scalings with a 16-dimensional basis. The back substitution uses another 2+N (N - 2) 
of these. The dominant part of this scaling cost therefore results from a total of 
(TV - 2) (N2 - N + 3) /3 16-dimensional L-CRT's for each of the real and imaginary 
parts. As in the analysis of the CRT each of these 16-dimensional operations is 
equivalent to 143 8-bit operations. With the same time-factor of 3 between the large 
accumulator and the 8-bit operations, we end up with 0(285iV3). From Table 2.1 
the number of divisions in the integer form of Gauss elimination would be, including 
the back substitution phase, N(N2 + 2)/3 with a total cost of O(500JV3) so that the 
saving from using the L-CRT to perform the scaling decreases to around 35% as N 
increases. Unfortunately it remains 0(N3) in the expensive calculation. 

Scaling using the L-CRT is clearly beneficial and is probably sufficient to at least 
allow small dimensional problems to be solved using the scaled divisionless algorithm 

of [6] and [7]. 

6. USING IMPROVED RNS DIVISION ALGORITHMS 

In this section we consider the use of more recent RNS-based division algorithms. 
In particular we study the use of an improved version of the algorithm of Hitz and 
Kaltofen [5] which can be used to obtain both the integer division and the remainder 
resulting from division of two integers each represented in an extended RNS which 
plays the role similar to that of a double length accumulator in regular binary arith- 
metic. No CRT conversions or their equivalent are required by this algorithm. It does 
however use several RNS base-extension operations. These however can be performed 
entirely within the RNS processors - provided enough such processors are available. 

This section begins with a brief summary of the Hitz and Kaltofen algorithm 
which has at its heart a pseudo-reciprocation step. We then describe an improvement 
to this reciprocation which alleviates the need for the magnitude comparison which is 
a necessary correction step in the original algorithm. Even though these comparisons 
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can be achieved in the extended RNS being used they do entail further base-extensions 
and are therefore relatively expensive. We take further advantage of this to improve 
the performance of the algorithm by speeding up its slowest part by a factor close to 
two. We conclude this section with a discussion of the savings that can be achieved by 
use of this algorithm in the context of Gauss elimination for adaptive beamforming. 

6.1. The division algorithm of Hitz and Kaltofen. The basic idea here 
is that a double length RNS representation is used in the following manner. Let 
pi, p2, ..., PN, PN+ii •••> P2N be a set of prime numbers. (They only need to be 
relatively prime for this purpose but we shall need Gaussian primes for our algorithm 
in order to perform complex RNS arithmetic efficiently.) Assume they are ordered so 
that pi < pN+i f°r each i = 1,2, ...,N. In [5] slightly stronger order assumptions are 
made but the additional assumptions play no role; indeed even this assumption can 
be weakened as we will see in discussing the use of this algorithm later. 

Let 
N          N 

M=Y[Pi,   M=nPN+i 
t'=l ! = 1 

so that M represents the dynamic range of the base RNS and MM represents the 
range of the extended RNS. Some important (though immediately apparent) obser- 
vations are made in [5]: 

M, M are relatively prime and M < M. 
It follows that M~l mod M exists. Also the first N moduli in the extended repre- 

sentation of an extended RNS number represent the remainder mod M . 
It also follows that multiplication of two numbers represented in the base RNS 

(that is, two numbers smaller than M) cannot overflow the extended RNS range. 
The division algorithm then consists of two stages in order to obtain the integer 

quotient LX/^J and remainder X modY where X, Y are positive integers in the 
base RNS range. In the first, the "reciprocal" [M/Y\ of Y is obtained using a 
modification of Newton's method. This is then used to generated the desired quotient 
and remainder. 

The reciprocation algorithm is described in [5] as follows. 

Algorithm RECIP 

Input: Y 
Output: LM/Yj 
begin 

Zi- -0 
z2+- -2 
while Z-i ^ Z2 do 
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Z\ <— Z2 

Z2±- [Z1*(2M-Y*Z1)/M\ 
if M - Y * Z2 < Y then return Z2 else return Z2 + 1 

end. 
The need for, and correctness of, the correction step is established in [5]. The 

iteration in the loop is just Newton's method in an "integerized" form. The division 
by M, equality testing and comparison are all achievable using the extended RNS 
basis in ways which are also detailed in [5]. We shall discuss later only those details 
which are needed. Once this M-reciprocation has been completed the rest of the 
division is straightforward. This algorithm is also given in [5]: 

Algorithm DIVREM 

Input:        X, Y 
Output: [XIY\ and X modY 
begin 

Q*-[X* RECIP (Y) IM\ 
R^X-Q*Y 
if R < Y then return Q, R else return Q + l, R-Y 

end. 
The comparison and division by M are performed as in the RECIP algorithm. 

6.2. Improved reciprocation. It is apparent that the critical part of this di- 
vision algorithm is RECIP and that any savings which can be achieved there are 
worthwhile. In this subsection we consider two sources of improvement. The first 
is the elimination of the correction step by using the ceiling rather than the floor 
function in the iteration. The convergence analysis must be appropriately modified - 
or simplified - to take account of this. This removes the need for the final comparison 
which is implemented in extended RNS by using two base extension operations. 

In [5], the number of steps of the Newton iteration is also discussed. For conve- 
nience of the analysis this is separated into two parts which can be thought of as a first 
stage of order 0 (log M) which achieves an iterate with a relative error of less than 
75% and a second O (log log M) which is the usual quadratic convergence behavior 
of Newton's method. In our setting, the first of these constitutes a potentially pro- 
hibitive number of iterations to achieve a suitably good estimate that the quadratic 
convergence takes over. A second consequence of the use of the ceiling function in the 
iteration is that it becomes easy to recognize when the iterates are well-removed from 
the desired reciprocal - and to make appropriate adjustments for this. The effect is 
that the number of iterations used in this first phase is reduced by an asymptotic fac- 
tor of 2. This modified algorithm is described and analysed in detail in [11]. Results 
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are included there which illustrate clearly that substantial savings in the number of 
iterations required are indeed achieved by this version of the algorithm. 

The modified algorithm is based on the reciprocation algorithm CRECIP which 
is given in [11] as 

Algorithm CRECIP (The accelerated Ceiling version of RECIP) 

Input:        Y 
Output: \M/Y] 
begin 

Z2 <-2 
while Z\ ^ Z2 and Z\ — 1 / Z2 do 

Z\ <— Z2 

Z2^- \Z1*{2M-Y*Z1)/M] 

if Z2 = 2Zi then Z2 = \Z\ 
return Z\ 

end. 

6.3. Using RNS division in Gauss elimination. If the RNS division algorithm 
described above is used within our Gauss elimination algorithm, the dynamic range 
growth ceases to be a problem since there is then no growth [12] for a positive definite 
Hermitian system. This growth result has another important consequence for the 
use of the RNS division algorithm. Because of this and the effective double-length 
accumulator provided by the extended RNS system, we know that all our results are 
representable in the base RNS and therefore that this division algorithm can be used 
without any need for further scaling operations. 

The great cost of the additional divisions referred to in Section 2 is greatly alle- 
viated too. Because the divisor is the same for every operation in each step of the 
elimination, there is only one call to the CRECIP procedure per row. That is there 
are just TV— 1 such reciprocation operations in the entire forward elimination process. 

Note too that the divisions that are needed for the back substitution operations 
have the same divisors and so, provided the reciprocals are stored from the forward 
elimination, no further calls to CRECIP are needed there - except for the reciprocation 
of the final value of üNN which has not been computed during the elimination phase. 

The various division operations can then be completed with just a modular mul- 
tiplication and the division by M which requires a further base-extension. The MRS 
conversion discussed in [5] is expensive in hardware and is probably impracticable for 
our situation.  (It requires approximately [L(L + 1) /2] log M RNS processors which 
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for the wordlengths discussed in [10] could be in the tens of thousands.) However, 
once the operation CRECIP has been completed the use of the MRS conversion for 
completing the divisions can be pipelined so that the overall time-delay is minimized. 
This idea is discussed in Section 4.3 of [6] using a recurrence based on the algorithm 

of Gregory and Matula [3]. 
Each step of the recurrence requires modular arithmetic using a separate modulus 

in the basis. If several quantities are to be converted to MRS form, it follows that 
while the first number is being processed in modulus m; the second can be processed 
simultaneously in the m,-_i processor and so on with the i-th being processed in the 
mi processor. In our setting the dimension of the linear system and the number 
of RNS basis elements will be of similar magnitude and so the largest time-delay 
would approximately correspond to twice the time for a single MRS conversion. The 
generation of the new moduli for the extended RNS basis can be simultaneous for 
each (extended) basis element and so adds just one further RNS operation time. The 
complete time for this operation is therefore of the order of 2L RNS operation times 
for all elements which are to be "extended" at any one stage of the process. 

From the results in [11], it appears that the number of iterations required for 
the CRECIP algorithm is always likely to be bounded by log (M/Y) and usually 
would be significantly less than this. The analysis of required wordlengths for Gauss 
elimination using integer divisions suggests that the divisors Y are likely to be large 
(since the maximal element of each successive square submatrix lies on the diagonal) 
and therefore that a typical value to be expected for the reciprocals may be bounded 
by around 220. The timing estimates below are based initially on an average of 20 
iterations being required for CRECIP which probably corresponds to a mean value 
for the reciprocal of around 225 or more. 

Each iteration requires 3 modular operations and a base extension which we have 
estimated at around 2L operations. Only N such reciprocals need be formed and so 
taking L = 16 for the dimension of the base RNS scheme the 20 iterations amount 
to a total of some 700iV modular operations. Completing the divisions then involves 
just one more modular operation plus a base-extension - or maybe 33 further modular 
operations. Even taking no account of any pipelining in this phase, we see that the 
0(N3) part of the process becomes a mere lliV3 modular operations. (Refer to Table 
2.1.) The total cost of the expensive divisions for the whole process is thus reduced 
by this algorithm to approximately 117V3 + 700iV modular operations which must be 
compared with approximately 5007V3 for the CRT-based divisions or 285JV3 for the 
L-CRT with scaling approach of Section 5. 

In Table 6.1 these modular operation counts are compared for TV = 4,8,16 using 
the 20 iterations per CRECIP mentioned above and with 40 and 60 iterations also to 
show that even if this estimate is very low the potential saving is great. 
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TABLE 6.1 

Equivalent modular operation coun ,s 

TV    CRT divisions    L-CRT scaling 
20 its 

RNS divisions 
40 its 60 its 

4     32 K                   18 K 
8      256 K                  146 K 
16    2 M                     1.2 M 

3.5 K 
11 K 
56 K 

6.3 K 
17 K 
67 K 

9.1 K 
22 K 
78 K 

It is apparent that the saving resulting from the improved RNS division are great. 
The expected times for problems with TV = 16 are of similar order of magnitude 
to those for TV = 4 using the CRT for the divisions or even using the L-CRT and 
scaling. Thus our earlier conclusion that problems of dimension 4 were about as far as 
we could hope to go with RNS arithmetic for adaptive beamforming may be revised 
to suggest that iV = 16 may be amenable to this method of solution. 

We should also observe that with even a moderate degree of parallelism available 
the Gauss-Jordan algorithm becomes a reasonable alternative to Gauss elimination. 
Since the covariance matrix in our beamforming problem is positive definite Hermitian 
there is no loss of numerical stability involved. This would allow the elimination above 
the diagonal to be performed simultaneously with the forward elimination phase and 
the back substitution would then consist of just one parallel "division" in for which 
the reciprocation has already been performed. The additional serial operation count 
of the Gauss-Jordan procedure is of course eliminated in this setting. 

7. CONCLUSIONS 

Clearly time-penalties even close to those suggested by the analysis of Section 2, 
combined with the increased numbers of divisions which are required for integer- 
arithmetic Gauss elimination for a positive definite Hermitian system are likely to 
prove unacceptable for "real-time" computation using the CRT to perform the divi- 
sions. 

This suggests that for RNS arithmetic to be useful in solving the covariance ma- 
trix form of the adaptive beamforming problem either the divisionless form of the 
algorithm [6] or some form of scaling or alternative division algorithm must be used 
to avoid or at least reduce the number or cost of the divisions that are needed. Scaling 
using the L-CRT is seen to offer some reasonable savings such that at least small-scale 
problems are amenable to this solution technique. 

The improved version of the Hitz and Kaltofen division algorithm in conjunction 
with some minimal pipelining and, perhaps most importantly, the observation that 
only TV reciprocals are needed for the O (TV3) divisions, renders larger scale problems 
suitable for solution by Gauss elimination using RNS arithmetic. 
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